
Arduino Library For BC7215 Universal IR
encoder/decoder

Introduction
This driver library provides an interface between the Arduino system and the BC7215 universal
infrared codec chip, enabling various operations targeting the BC7215 chip. To use this driver
library, a basic understanding of the BC7215 chip is required; please refer to the BC7215 datasheet
for more information.

This driver library can operate on any Arduino board that offers a hardware serial port, as well as
on Arduino boards using a software serial port, but the software serial port must be set to a baud
rate of 19200, 8 data bits, and 2 stop bits.

Installation
In the Arduino IDE, select "Sketch --> Include Library --> Add .ZIP Library", and choose the bc7215.zip
package file to complete the installation. After installation, you can see the example programs
provided with the library under File --> Examples in the IDE.

Data Types
The driver library defines the data types:

This type defines the maximum data packet that can be processed, and the maximum data packet
length that can be handled is defined in the library configuration file (see the "Advanced
Applications" section.)

This type defines the format information packet of the BC7215.

Usage
To use this driver library, simply add the following line at the very top of your sketch:

struct bc7215DataMaxPkt_t{

 word bitLen;
 byte data[BC7215_MAX_DATA_BYTE_LENGTH];

};

struct bc7215FormatPkt_t{

 union {

 struct {
 byte sig : 6;

 byte c56k : 1;

 byte noCA : 1;

 } bits;
 byte byte;

 } signature;

 byte format[32];
};

af://n0
af://n2
af://n5
af://n7
af://n13

The BC7215 uses a serial connection to Arduino and also requires 2 digital I/O pins for connecting
the MOD and BUSY signals.

To use it, you must first create an instance of BC7215, like so:

This line of code creates an instance of BC7215 named irModule. In the parameters, Serial1 refers
to the Serial port connected to the BC7215, "6" is the I/O pin connected to MOD, and "7" is the I/O
pin connected to the BUSY signal.

The MOD and BUSY signals do not have to be connected to the Arduino in every applications. In
some cases, you might only use the BC7215 for either receiving or transmitting, in which case the
MOD signal can be directly connected to either VCC or GND. Similarly, if you are not using the
infrared transmission function, the BUSY signal can be left unconnected.

For these situations, when creating an instance of BC7215, special parameters represent these
specific hardware connections:

BC7215::MOD_HIGH

BC7215::MOD_LOW

BC7215::BUSY_NC

These respectively represent the MOD connected to a fixed high level, MOD connected to a fixed
low level, and BUSY not connected. Example:

In the initialization function setup() , you need to configure the serial port parameters connected

to the BC7215:

The MOD and BUSY I/O pins are automatically initialized by the library.

Interface Functions
 The BC7215 class provides:

1. State Control Functions

2. Query Functions

3. Reception-related Functions

4. Transmission-related Functions

5. Utility Functions

#include "bc7215.h"

BC7215 irModule(Serial1, 6, 7);

BC7215 irModule(Serial1, BC7215::MOD_HIGH, BC7215::BUSY_NC);

Serial1.begin(19200, SERIAL_8N2);

af://n34

1. State Control Functions

These functions allow users to control the working state of the BC7215.

Sets the BC7215's working mode to receive (infrared decoding) mode. The actual operation sets
the MOD signal to high. If this function is called while the BC7215 is in the process of infrared
transmission, the BC7215 may need to complete the transmission of the current infrared bits
before switching to receive mode, which could take up to 20ms. Users should ensure that no other
operations are performed on the BC7215 during this period.

Sets the BC7215's working mode to transmit (infrared encoding) mode. The actual operation sets
the MOD signal to low. After calling this function, it may take up to 2ms for the BC7215 chip to
complete the mode switch. Users should ensure that no other operations are performed on the
BC7215 during this period.

In transmission mode, sets the BC7215 to shut down mode. After calling this function, the
command F7 00 is sent to the BC7215. This function only takes effect in transmission mode. If
called in receive mode, since the last data sent is 0x00, the BC7215's receive mode will switch to
simple mode (for details, please refer to the BC7215 datasheet). After calling this function, users
can query the command execution status with cmdCompleted().

In receive mode, sets the receiving decoding mode (for details, please refer to the BC7215
datasheet). The lowest two bits of mode determine the working mode after the command is

executed.

2.Query Functions

These functions allow users to query the working status of the BC7215.

Queries whether valid infrared data has been received from the BC7215. Returns 1 (true) if valid
data is present, otherwise returns 0 (false).

This query is only valid in receive mode; if called in transmission mode, it will always return 0.

void setRx();

void setTx();

void setShutDown();

void setRxMode(byte mode);

bool dataReady();

af://n47
af://n61

If the reception function is disabled in the library configuration file, this function is not available.
There are three circumstances under which the status of valid infrared data will be cleared:

1. New data from BC7215 is received via the serial port.

2. The getData() or getRaw() functions are called.

3. The clrData() function is called to clear the data packet.

Queries whether format data has been received from the BC7215. Returns 1 (true) if valid format
data is present, otherwise returns 0 (false). This query is only valid in receive mode; if called in
transmission mode, it will always return 0.

In composite mode, BC7215 outputs format information of the received infrared signal in addition
to the raw data. Generally, if format data is received, raw data has also been received previously,
but there is a case where the total length of the raw data plus format information exceeds the
length of the driver library's buffer. In this case, the previously received raw data will be
overwritten, leaving only the format information usable.

To obtain the raw data in such cases, BC7215 needs to be set to simple mode to re-receive the
infrared signal. If the reception function is disabled in the configuration, this function is not
available. The status of valid format data will be cleared under three circumstances:

1. New data from BC7215 is received via the serial port.

2. The getFormat() function is called.

3. The clrFormat() function is called to clear the format packet.

In transmission mode, queries whether a command has been completed. A return value of 1 (true)
indicates that the command has been completed; 0 (false) indicates it has not. In receive mode,
this function will always return 1.

This can include transmission commands and shutdown commands. The BC7215 chip has an
internal 16-byte reception buffer. Although the rate of infrared transmission is relatively low, for
data amounts within 16 bytes, the transmission function will return almost immediately, but the
actual data transmission process, completed by the BC7215 chip, takes longer. Sometimes users
need to know when the transmission is complete, for example, to ensure a specific interval
between two transmissions. This function can be used to query the completion time of the last
transmission. The shutdown command executes immediately, and this function can query
whether the BC7215 has entered the shutdown state.

bool formatReady();

bool cmdCompleted();

3. Reception-related Functions

Gets the length of the received raw data packet in bits, which is, the bitLen in
bc7215DataMaxPkt_t .

The actual length of data copied by the getData() function corresponds to the number of bytes

for this value +2. For example, if bitLen is 9, the raw data requires 2 bytes, and the actual number

of bytes copied will be 4.

If the raw data packet is unavailable, the result will be 0. This function allows users to check the
length of data before retrieving raw data to prevent memory overflow or to dynamically allocate
memory. If the reception function is disabled in the library configuration, this function is not
available.

Gets the size of the received data packet in bytes.

This function is equivalent to the one that gets the bit length but returns the size of the entire data
packet in bytes, saving users the efforts of conversion. Since the data packet length is determined
by the infrared transmitter, it's possible to receive data exceeding expectations. Users can check
the size of the data packet before retrieval to prevent memory overflow. If the reception function
is disabled in the library configuration, this function is not available.

Function for reading the data packet.

The input parameter is a variable of type bc7215DataMaxPkt_t . After executing the command, the

received data packet will be copied into this variable. The return value is the status byte of the
data packet, which can be used to quickly determine the status of the received data.

If the data in the cache is no longer available (e.g., it has been overwritten by new data), it will
return 0xff.

This function clears the dataReady() status. Users must ensure that the target size can

accommodate the received data; executing this function with insufficient memory space for the
data can lead to memory overflow and unpredictable consequences. Users should first use
getLen() or dpktSize() to get the data length, allocate memory or check space size, then call

this function. If the reception function is disabled in the library configuration, this function is not
available.

Function for retrieving the raw data from the received data packet.

word getLen();

word dpktSize();

byte getData(bc7215DataMaxPkt_t& target);

word getRaw(void* addr, word size);

af://n91

Similar to the above data packet reading function, but this function only reads out the raw payload
data without the bit length information and can output to any address, making it more suitable for
use in infrared communication. size is the number of bytes to read, which may not necessarily
match the amount of data received; it can be less than or more than the actual number of bytes
received. If size is less, it returns data up to the value of size ; if size is more, it only reads out

the actual number of bytes received. The return value is the actual number of bytes read. If the
reception function is disabled in the library configuration, this function is not available.

Function for reading the format data packet.

The input parameter is a variable of type bc7215FormatPkt_t . After executing the command, the
received format data packet will be copied into this variable. The return value is the signature byte
of the format data packet. If the data in the library cache is no longer available (e.g., it has been
overwritten by new data), it will return 0xff. This function clears the formatReady() status. If the

reception function is disabled in the library configuration, this function is not available.

4. Transmission-related Functions

Loads format data into the BC7215 chip.

After calling this function, the format information data pointed to by source will be loaded into

the BC7215 chip. If the transmission function is disabled in the library configuration, this function
is not available.

Transmits infrared data. Calling this function will cause the BC7215 to transmit the data packet
source via infrared.

The format used for transmission is the last loaded format. If switching from receive to transmit
mode without having loaded a format, the format of the last received infrared signal will be used.
If the data to be transmitted is less than 16 bytes (128 bits), this function will return immediately
after writing the data to the BC7215's internal buffer; if more than 16 bytes, it returns after the last
16 bytes are written to the buffer. The specific time required for infrared transmission depends on
the infrared modulation format used, typically several ms per byte. The cmdCompleted() function

can be used to query whether the infrared transmission is complete. If the transmission function
is disabled in the configuration, this function is not available.

Sends raw data.

byte getFormat(bc7215FormatPkt_t& target);

void loadFormat(const bc7215FormatPkt_t& source);

void irTx(const bc7215DataMaxPkt_t& source);

void sendRaw(const void* source, word size);

af://n115

Similar to irTx() , but source can be any type of data, not limited to the raw data packet format,

with size being the number of bytes to be sent. This function is suitable for data communication.

5. Utility Functions

The BC7215 class also provides some utility functions. These functions do not directly operate the
BC7215 chip but are common operations that users frequently need when using BC7215.

Sets the control bit of the format data packet feature byte. After setting, the C56K bit will be set,
and after loading the data packet, BC7215 will use a 56K carrier for transmission.

Clears the control bit of the format data packet feature byte. After setting, the C56K bit will be
cleared (reset to default state), and after loading the data packet, BC7215 will use a 38K carrier for
transmission.

Sets the control bit of the format data packet feature byte. After setting, the NOCA bit will be set,
and after loading the data packet, BC7215 output will not use a carrier, producing only high and
low level outputs.

Clears the control bit of the format data packet feature byte. After setting, the NOCA bit will be
cleared (reset to default state), and after loading the data packet, BC7215 will use a 38k or 56k
carrier for output.

CRC8 calculation function.

If BC7215 is used for data communication, it might be necessary to add CRC checks to data
packets to improve reliability. Since data packets suitable for BC7215 are generally small,
(recommended data length is within 16 bytes,) and because the infrared communication rate is
low, using an 8-bit CRC check is more appropriate. It prevents errors without significantly
increasing communication time.

void BC7215::setC56K(bc7215FormatPkt_t& target);

void BC7215::clrC56K(bc7215FormatPkt_t& target);

void BC7215::setNOCA(bc7215FormatPkt_t& target);

void BC7215::clrNOCA(bc7215FormatPkt_t& target);

byte BC7215::crc8(byte* data, word len);

af://n128

The function has two input parameters: a pointer to the data and the length of the data to
calculate the CRC for. The length here refers to byte length, not bit length, and the function
calculates CRC by byte. The return value is the calculated CRC result.

The CRC calculation polynomial, default value is 0x07, defined in bc7215_config.h , can be

modified by users as needed.

Calculates the size of a data packet.

This function returns the size of the actual data packet in dataPkt , including both the raw data

part and the bit length part, in bytes.

Data packet copy function.

This function copies the data packet from source to the address of target . The copy operation

only copies the size of the actual data packet in source . It is worth noting that this function
supports the overlap of source and target , which effectively moves the data packet, for

example, target 's address can be just 1 byte different from source , equivalent to moving the

data packet forward or backward by one byte in memory.

Compares two data packets. This function compares whether the valid data in two packets are the
same. If the same, the function returns 1 (true); if different, returns 0 (false).

Infrared data may not end in a complete byte, and this function supports the comparison of
incomplete bytes. Due to different encoding formats, data may be MSB-first or LSB-first, so the
signature byte is needed to determine the data alignment. The function assumes the signature
bytes of both packets are the same. If the two packets have different modulation methods, their
data lengths and data are most likely different.

Advanced Applications
 The driver library includes a configuration file bc7215_config.h located in the

libraries/bc7215 directory of the Arduino root directory. It defines some parameters related to

this driver library. Advanced users can adjust these values according to their needs to better suit
their projects. The main configuration parameters are as follows:

ENABLE_RECEIVING

word BC7215::calSize(const bc7215DataMaxPkt_t& dataPkt);

void BC7215::copyDpkt(void* target, bc7215DataMaxPkt_t& source);

bool compareDpkt(byte sig, const bc7215DataMaxPkt_t& pkt1, const

bc7215DataMaxPkt_t& pkt2);

af://n160

This parameter controls whether to enable the driver library's receiving / decoding processing
function, including receiving data packets, receiving format packets, etc. This parameter defaults to
1 , which means enabled. If users do not need BC7215's receiving decoding function, it can be
modified to 0 . Disabling the receiving function also makes related functions unavailable. Since the

receiving decoding function occupies most of the required memory and program content,
disabling it will significantly reduce the size and memory footprint of this driver library.

ENABLE_FORMAT

Under the receiving function, there's a further control parameter for enabling the reception of
format information. The default value is 1 , which means enabled. If not needed, it can be changed

to 0 . Some applications, such as data communication, do not need to acquire format information

of the infrared signal. In such cases, this function can be turned off, saving 33 bytes of RAM and
some program space, as the format information packet is 33 bytes long.

ENABLE_TRANSMITTING

This parameter controls whether to enable the infrared transmission-related functions, defaulting
to 1 for enabled status. Changing it to 0 can disable these functions, saving some program
space.

BC7215_MAX_RX_DATA_SIZE

Represents the maximum length of payload in a data packets that can be received, in bytes,
ranging from 1 to 512.

In real world the actual length of data emitted by a remote controller, for audio-visual equipment,
is generally within 8 bytes, and for air conditioners, generally within 32 bytes. The larger this
defined value, the more memory the driver library will occupy.

BC7215_CRC8_POLY

The library provides a utility function for CRC-8 calculation. This parameter defines the polynomial
value for CRC-8 calculation, with the default value being 0x07. Users can modify it according to
their needs.

	Arduino Library For BC7215 Universal IR encoder/decoder
	Introduction
	Installation
	Data Types
	Usage
	Interface Functions
	1. State Control Functions
	2.Query Functions
	3. Reception-related Functions
	4. Transmission-related Functions
	5. Utility Functions

	Advanced Applications

